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Abstract Identification of Hammerstein nonlinear
models has received much attention due to its abil-
ity to describe a wide variety of nonlinear systems.
In this paper the maximum likelihood estimator which
was originally derived for linear systems is extended to
work for Hammerstein nonlinear systems in colored-
noise environment. The maximum likelihood estimate
is known to be statistically efficient, but can lead
to complex nonlinear multidimensional optimization
problem; traditional methods solve this problem at the
computational cost of evaluating second derivatives.
To overcome these shortcomings, a particle swarm
optimization (PSO) aided maximum likelihood iden-
tification algorithm (Maximum Likelihood-Particle
Swarm Optimization, ML-PSO) is first proposed to in-
tegrate PSO’s simplicity in implementation and com-
putation, and its ability to quickly converge to a rea-
sonably good solution. Furthermore, a novel adaptive
strategy using the evolution state estimation technique
is proposed to improve PSO’s performance (maximum
likelihood-adaptive particle swarm optimization, ML-
APSO). A simulation example shows that ML-APSO
method outperforms ML-PSO and traditional recur-
sive least square method in various noise conditions,
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and thus proves the effectiveness of the proposed iden-
tification scheme.

Keywords Hammerstein system · Maximum
likelihood principle · Adaptive particle swarm
optimization

1 Introduction

Nonlinear models are commonly used to describe the
behavior of many industrial processes. The so called
block-oriented models have turned out to be very use-
ful for the estimation of nonlinear systems, namely the
Hammerstein model, Wiener model, Hammerstein-
Wiener model. Large amounts of work on the identifi-
cation and control of these models and other nonlinear
models have been proposed [1–11]. The Hammerstein
model which consists of a static nonlinear block fol-
lowed by a linear time-invariant subsystem is the focus
of this paper.

There exist a large number of works on the topic
of identification of Hammerstein systems in the litera-
ture. Most of the methods can be roughly classified as
parametric and nonparametric methods. The method
is called ‘parametric’ if both linear and nonlinear sub-
systems are described with the use of finite number of
unknown parameters. For parametric methods, Naren-
dra and Gallman (1966) proposed an iterative algo-
rithm [12], however, this algorithm is not suitable for
the general case with colored noise and non-FIR linear
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blocks; Vörös presented a key term separation tech-
nique to identify Hammerstein systems with discontin-
uous nonlinearities such as dead-zones [13]; Recently,
Ding et al. presented an iterative least-squares algo-
rithm and a recursive least-squares (RLS) algorithm
for Hammerstein systems [14], Yu et al. and Ding et
al. presented a class of stochastic gradient identifica-
tion algorithms for linear or nonlinear system iden-
tification [15–19]. And also some new nonparamet-
ric identification methods are presented, such as the
using of neural network to model the static nonlin-
ear part [20, 21], and identification without explicit
parameterization of nonlinearity driven by piece-wise
constant inputs [22].

Compared with the methods mentioned above,
maximum likelihood technique has superior statistical
performance, and has the unique advantage to oper-
ate directly on time-domain data and simultaneously
estimate all of the system parameters in a statistically
optimal sense [23]. The Maximum Likelihood Estima-
tor was first introduced by Fisher, and has been widely
used and discussed since then. Ljung [24] applied the
maximum likelihood approach to dynamical systems.
He derived the likelihood function based on the pre-
diction error approach and showed that the maximum
likelihood method can be seen as a special case of
the prediction error criterion. The main objective of
this paper is to investigate maximum likelihood-based
parametric identification methods for a discrete-time
single-input and single-output (SISO) Hammerstein
model from input data and noise contaminated output
data observed from a finite time interval.

Maximum likelihood (ML) method has excellent
asymptotic performance but on the other hand, usu-
ally leads to nonlinear, multidimensional optimiza-
tion problems. So ML method has seen little prac-
tical use because of the apparent complexity of the
computations necessary to find the maximum of the
likelihood function [25]. To solve such optimization
problems, several techniques have been proposed. The
first is the newton-type optimization, which is sensi-
tive to the initial estimates and involves high-order
derivatives for the parameters; Amemiya (1974) has
developed a class of estimators for nonlinear structural
models that requires the minimization of a quadratic
distance function, the distance function contains in-
strumental variables but no explicit Jacobian matrix,
but this still needs tremendous computation work; an-
other technique is using genetic algorithm (GA), but

GA is computationally expensive compared to the par-
ticle swarm optimization (PSO); Moreover, PSO takes
less time for each function evaluation as it does not
use many of GA operators such as mutation, crossover,
and selection operator. PSO is a stochastic and simple
evolutionary optimization technique based on social-
psychological model of social influence and social
learning; it imitates the “fly nature” of n-dimensional
swarm of particles through a problem space, in search
of a single optimum or multiple optima. PSO is one
of the most successful swarm intelligence techniques
currently in existences and has already been applied
successfully to image analysis, data clustering, neural
network training etc. PSO method is popular owing
to its simplicity in implementation, ability to quickly
converge to a reasonably good solution and robustness
against local minima [26].

Unfortunately, few papers combine PSO algorithm
and maximum likelihood estimation to address nonlin-
ear identification problem [27]. A particle swarm op-
timization aided Maximum Likelihood identification
method (ML-PSO method) for Hammerstein system is
therefore explored in this work. Although PSO algo-
rithm is easy to implement and has been empirically
shown to perform well on many optimization prob-
lems, standard PSO algorithm can get trapped in the
local optima when solving complex multimodal prob-
lems while the convergence rate decreased consider-
ably in the later period of evolution and the perfor-
mance depends largely on initial parameter setting. For
these reasons, an adaptive particle swarm optimization
(APSO) algorithm with faster convergence speed and
high accuracy is presented.

Most of the contributions assume that the systems
under consideration are the nonlinear ARX models,
or equation-error-like models [28, 29], and few ad-
dress parametric model identification methods for the
Hammerstein nonlinear ARMAX systems with col-
ored output noises, which will be studied in this work.

The layout of the remainder of the paper is as fol-
lows. In Sect. 2, the problem of interest is described.
Section 3 provides the Maximum Likelihood approach
to this problem. Section 4 shows the standard PSO al-
gorithm and presents an adaptive PSO algorithm to op-
timize the target function obtained by ML principle.
Section 5 shows the overall identification scheme by
combining APSO and maximum likelihood estimate.
Section 6 provides illustrative example to show the
effectiveness of the algorithm proposed. Finally, con-
cluding remarks are offered in Sect. 7.
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2 Nonlinear ARMAX modeling and problem
statement

In a deterministic setting, the linear part of the sys-
tem is characterized by a rational transfer function and
the system output y(t) is exactly observed. However,
in practice the system itself may be random and the
observations may be corrupted by noises. So, it is of
practical importance to consider stochastic Hammer-
stein systems as shown in Fig. 1, which is composed
of a nonlinear memoryless block f (·) followed by a
linear subsystem. u(t) is the system input, y(t) is the
system output, and v(t) is white noise sequence. The
true output x(t), colored noise w(t) and the inner vari-
able u(t) which is the output of the nonlinear block
are immeasurable. N(z) is the transfer function of the
noise model, and G(z) is the transfer function of the
linear part in the model.

The linear dynamical block in Fig. 1 is an ARMAX
subsystem, so the nonlinear model in Fig. 1 has the
following IO relationship:

y(t) = x(t) + w(t)

x(t) = G(z)u(t) = B(z)

A(z)
ū(t)

w(t) = N(z)v(t) = D(z)

A(z)
v(t)

This can be transformed as

y(k) = −
na∑

i=1

aiy(k − i) +
nb∑

i=1

biu(k − i)

+
nd∑

i=1

div(k − i) + v(k) (1)

where v(t) is a white noise sequence with the nor-
mal distribution v(k) ∼ N(0, σ 2

v ) for the nonparamet-
ric f (·), the value f (u) is estimated for any fixed u.
In the parametric case, f (·) either is expressed by a
linear combination of known basis functions with un-
known coefficients, or is a piecewise linear function
with unknown joints and slopes, and hence identifica-

Fig. 1 The discrete-time SISO Hammerstein system

tion of the nonlinear block in this case is equivalent
to estimating unknown parameters. The nonlinear part
is considered as a nonlinear function of a known basis
(w1,w2, . . . ,wnc ) with coefficients (c1, c2, . . . , cnc ) in
this paper:

f
(
u(k)

) = u(k) = c1ω1
(
u(k)

) + c2ω2
(
u(k)

) + · · ·

+ cncωnc

(
u(k)

) =
nc∑

i=1

ciωi

(
u(k)

)
(2)

Notice that the parameterization is actually not
unique. In order to get a unique parameter estimate,
without loss of generality, one of the gains of f (·)
must be fixed. Here the first coefficient of the nonlin-
ear function is assumed to equal 1, i.e. c1 = 1 [30].

Substituting (2) into (1) gives

y(k) = −
na∑

i=1

aiy(k − i) +
nb∑

j=1

bj

nc∑

i=1

ciωi

(
u(k − i)

)

+
nd∑

i=1

div(k − i) + v(k) (3)

Define the parameter vector as

θ = [a1, a2, . . . , ana , b1, b2, . . . , bnb
, c1, c2, . . . , cnc ,

d1, d2, . . . , dnd
] (4)

3 Maximum likelihood identification

The problem of estimating the model of the form (3)
from available input and noise-corrupted output ob-
servations is now considered. The proposed method
is based on the Maximum Likelihood principle, as
it is well-known that maximum likelihood estimation
approaches are characterized by optimal asymptotic
properties under rather mild conditions [31, 32].

Under the condition of independent observation,
for a given set of measurements uL := {u(1), u(2), . . . ,

u(L − 1)} and yL := {y(1), y(2), . . . , y(L)}, the con-
ditional probability density function of the observation
vector is

p(yL|uL−1, θ)

= p
(
y(L)|yL−1,uL−1, θ

)

× p
(
y(L − 1)|yL−2,uL−1, θ

)

× · · · × p
(
y(1)|y(0),u(0), θ

)

=
L∏

k=1

p
(
y(k)|yk−1,uk−1, θ

)
(5)
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Substituting (3) into (5), we have

p(yL|uL−1, θ)

=
L∏

k=1

p

(
v(k) −

na∑

i=1

aiy(k − i)

+
nb∑

j=1

bj

nc∑

i=1

ciωi

(
u(k − i)

)

+
nd∑

i=1

div(k − i)|yk−1,uk−1, θ

)

Since y(·), u(·) and v(·) before time k − 1 has al-
ready been determined when the observation time ar-
rives k, and that v(k) is uncorrelated with yk−1,uk−1

and θ , (5) can be rewritten as

p(yL|uL−1, θ)

=
L∏

k=1

p
(
v(k)

) + const

=
L∏

k=1

(
2πσ 2

v

)− 1
2 exp

(
− 1

2σ 2
v

v2(k)

)
+ const

= (
2πσ 2

v

)− L
2 exp

(
− 1

2σ 2
v

L∑

k=1

v2(k)

)
+ const (6)

where const denotes a constant which can be deter-
mined by the previous data, σ̃ 2

v is the estimated noise
variance of v(k).

The log-likelihood function is thus given by

L(yL|uL−1, θ)

:= logL(yL|uL−1, θ) = logp(yL|uL−1, θ)

= const − L

2
log 2π − L

2
logσ 2

v − 1

2σ 2
v

L∑

k=1

v2(k)

(7)

where

v(k) = y(k) +
na∑

i=1

aiy(k − i) −
nb∑

i=1

biu(k − i)

−
nc∑

i=1

ciωi

(
u(k)

) −
nd∑

i=1

div(k − i) (8)

According to maximum likelihood principle, the
maximum likelihood estimate σ̃ 2

v of noise variance σ 2
v

maximize the log-likelihood function, which leads to

∂L(yL|uL−1, θ)

∂σ 2
v

∣∣∣∣σ̃
2
v = 0 (9)

Thus we have

σ̃ 2
v = 1

L

L∑

k=1

v2(k) (10)

Substituting (10) into (7) yields

L(yL|ul−1, θ) = const − L

2
log

1

L

L∑

k=1

v2(k) (11)

Maximizing (11) is equivalent to minimizing

V (θML) = 1

L

L∑

k=1

v2(k)|θML
(12)

where θML is the maximum likelihood estimate of θ .
Thus, the identification problem of Hammerstein sys-
tem is equivalent to this optimization problem of (12)
under the constraint of (8). Obviously, V (θML) is
a nonlinear, multidimensional function with respect
to θML. To solve such an optimization problem, a
novel adaptive particle swarm optimization method is
proposed to estimate the system parameters.

4 Adaptive particle swarm optimization

PSO was first introduced by Kennedy and Eber-
hart [33]. PSO employs a natural animal behavior such
as bird flocking, fish schooling to yield the best of the
characteristics among the population. In PSO algo-
rithm, each particle represents a potential solution, and
the status of a particle is characterized by its position
and velocity. The position and velocity of each particle
are initialized randomly within searching space. Each
particle flies in the search space with velocity and po-
sition which are dynamically adjusted according to its
own as well as the population’s best status. During the
evolutionary process, the position and velocity of par-
ticle i are updated as

vi(t + 1) = ωvi(t) + rand1c1
(
Lbesti − pi(t)

)

+ rand2c2
(
Gbesti − pi(t)

)
(13)

pi(t + 1) = pi(t) + vi(t + 1) (14)

where pi(t) is the position of ith particle in t th iter-
ation, Lbesti is the best previous position of this par-
ticle, Gbesti is the best previous position among all
the particles in t th iterations. ω is the inertia weight
to control the learning rate [34], c1 and c2 are ac-
celeration coefficients and are known as the cognitive
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and social parameters, respectively. Finally, rand1 and
rand2 are two random numbers in the range [0,1]. Af-
ter calculating the velocity, the new position of every
particle can be worked out by (14). The PSO algo-
rithm is repeated using (13) and (14) which are up-
dated at each iteration, until the predefined number of
iterations is reached.

Due to the popularity of PSO in practical problem
solving, theoretical studies and performance improve-
ments of the algorithm have become attractive and
important. Convergence analysis and stability stud-
ies have been reported by Clerc and Kennedy [35],
Kadirkamanathan et al. [36], Trelea [37]. Meanwhile,
much research on performance improvements has
been reported, including parameter studies, topolog-
ical structures [38], and combination with auxiliary
operations.

Shi and Eberhart proposed an ω linearly decreasing
with the iterative generations as

ω = ωmax − (ωmax − ωmin)
g

G
(15)

where g is the generation index representing the cur-
rent number of revolutionary generations and G is
a predefined maximum number of generations. This
strategy can improve the algorithm’s performance
greatly. Besides, Clerc proposed a constriction coeffi-
cient to maintain the balance between exploration and
exploitation in PSO.

In addition to the inertia weight and the constric-
tion factor, the acceleration coefficients c1 and c2 are
also important parameters in PSO. Suganthan [39]
showed that using flexible values of c1 and c2 rather
than a fixed value could yield better performance. Rat-
naweera et al. [40] proposed a PSO algorithm with lin-
early time-varying acceleration coefficients, where a
larger c1 and a smaller c2 were set at the beginning
and gradually reversed during the search h. In this pa-
per, a modified adaptive PSO algorithm according to
the Evolution State Estimation (ESE) is presented.

During a PSO process, the population distribution
characteristics vary not only with the generation num-
ber but also with the evolutionary state. The algorithm
is based on the assumption that at an early stage, the
elite particles scatter around the whole searching space
like any other particles, the population distribution is
dispersive; at the converging stage of the algorithm,
the elite particles are surrounded by the other particles,
at this stage, groups of particles clustering together
centering the locally or globally optimal area; at the

jumping out stage of the algorithm, the elite particles
are far away from ordinary particles, attracting them to
move towards better positions. Thus the states of the
process can be classified into four sets S1, S2, S3, and
S4, which represent the states of exploration, exploita-
tion, convergence, and jumping out, respectively.

The problem now is how to detect which stage of
the evolutionary process is when executing the algo-
rithm. Here a more simple and effective evolutionary
stage assessing factor is presented compared with [41].

First, denote the sum of the distance of the globally
best particle and other particles as

dg =
P∑

i=1

‖pg − pi‖ (16)

where P is the swarm size, g is the particle index of
the globally best one.

Next, define Dg as

Dg =
∥∥∥∥∥

P∑

i=1

(pg − pi)

∥∥∥∥∥ (17)

It is obvious that Dg is always smaller than dg . At
the early stage of evolution, Dg is slightly less smaller
than dg ; at the converging stage, Dg is far more less
than dg ; at the jumping out stage, there is little distinc-
tion between Dg and dg .

Then we have the evolutionary factor defined as

f = dg

Dg

, f ∈ [0,1] (18)

An ESE method based on this evolutionary factor is
shown in Fig. 2, S1 to S4 denotes the four stages dur-
ing the evolutionary process. Each link between two
different states signifies the condition under which the
transition can be carried out.

After defining the evolutionary factor and knowing
which stage the particle swarm is in, the inertia weight
and acceleration can be improved using an adaptive
strategy. Many researchers have advocated that the
value of ω should be large in the exploration stage and
small in the exploitation stage. The evolutionary factor
f shares some characteristics with the inertia weight
in that f is also relatively large during the exploration
state and becomes relatively small in the convergence
stage. Hence the inertia weight can be adjusted as

ω = (
1 + 2 exp(−1.4f )

)−1
,

f ∈ [0,1], ω ∈ [0.3,0.7] (19)
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Fig. 2 ESE scheme based on evolutionary factor

The acceleration coefficients are

ct+1
1 =

{
ct

1 + (2.2 − ct
1)d1, s ∈ {1,4}

ct
1 + (1.8 − ct

1)d2, s ∈ {2,3} (20)

ct
2 = 4 − ct

1 (21)

where t is iterative variable, s is evolutionary state, d1

and d2 are parametric control variables.
This dynamic adjusting strategy improves the con-

vergence speed, but also increases the probability of
converging to local minimum. So a mutation operator
is introduced here to solve this problem. When the al-
gorithm is in converging stage, mutate each particle
under a certain probability, so as to jump out the local
minimum.

The pseudo code of the mutation operator is as fol-
lows:

Algorithm input: current evolutionary factor f , parti-
cle swarm PS
If PS is in converging stage then:

Compute the mutation rate
pr = 0.03 + 0.07 × (1 − f )2

For each particle r in PS:
Get a random number rand between [0,1]
If pr < rand, then:

Mutate r :
r = rand × [Max − Min] + Min

5 Identification scheme

To solve the optimization problem in (12), the APSO
algorithm listed above is employed to get the op-
timum. The iterative estimation theory is adopted:

Fig. 3 Flow chart of APSO
algorithm

when computing the parameter estimates, the un-
known noise terms are replaced with their correspond-
ing estimates at the preceding iteration, and the es-
timates of these unknown noise variables are again
computed through the parameter estimates [42].

The flowchart of the identification scheme is as fol-
low. Figure 4 is the flowchart of APSO algorithm,
Fig. 3 is the overall identification scheme.

In Fig. 3, K is the iteration times of maximum like-
lihood estimation. In Fig. 4, i is particle number, F is
fitness function, G is the iteration times for APSO. The
procedure of ML-APSO algorithm is as follow:
Step 1: Prepare for the algorithm:

1.1. Initialize the system parameters and collect input
and output.

1.2. Compute V (θML) using data collected in the last
step.

Step 2: Employ APSO algorithm to optimize
V (θML):
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2.1. Initialize APSO parameters, such as swarm size,
searching space, inertia weight, etc. to form a
particle swarm S = {s1, s2 . . . , sp}. Each particle
represents a possible solution corresponding to
all the parameters to be identified.

2.2. Compute evolutionary factor f and get the evolu-
tion state estimate, adjust system parameters ac-
cordingly.

2.3. For each particle si (i = 1,2, . . . , p), if si is
in stage S3, perform the mutation operation; if
not, calculate and record fitness of si as Fi (i =
1,2, . . . , p).

2.4. If Fi is better than FLocalBest, record particle i as
LocalBest; if Fi is better than FGlobalBest, record
i as GlobalBest, and proceed to the next particle.

2.5. After all particles are processed, update particle
velocity and position as (13) and (14) indicated.

2.6. If iteration number is smaller than predefined
number G, jump to 2.2.

Step 3: Update system parameters with the best parti-
cle obtained from APSO
Step 4: If iteration number is smaller than predefined
number K , jump to 1.2.

6 Case study

Due to the commonly recognized effectiveness of
Ding and Chen’s RLS algorithm, Ding’s example [14]
is taken as the model to demonstrate the improved
identification performance of the new algorithm. This
is a Hammerstein ARMAX system as follows:

A(z)y(t) = B(z)̃u(t) + D(z)v(t)

u(t) = f
(
u(t)

) = c1u(t) + c2u
2(t) + c2u

3(t)

= u(t) + 0.5u2(t) + 0.25u3(t)

A(z)y(t) = B(z)u(t) + D(z)v(t)

B(z) = b1z
−1 + b2z

−2 = 0.85z−1 + 0.65z−2

D(z) = 1 + d1z
−1 = 1 − 0.64z−1

u(t) = f
(
u(t)

) = c1u(t) + c2u
2(t) + c2u

3(t)

= u(t) + 0.5u2(t) + 0.25u3(t)

θ = [a1, a2, b1, b2, c2, c3, d1]T

{u(t)} is taken as a persistent excitation signal se-
quence with zero mean and unit variance, and {v(t)}

as a white noise sequence with zero mean and constant
variance σ 2

v .
The noise-to-signal-ratio (NSR) is defined by the

standard deviation of the ratio of input-free output and
noise-free output in Fig. 1, that is,

NSR =
√

var[w(t)]
var[x(t)] × 100 %

Apply three algorithms (RLS, ML-PSO, and ML-
APSO) to this system; the sampling data length is
2000, with NSR is 17.75 % and 28.56 %, respec-
tively. MAPSO and PSO swarm size is 20, the ini-
tial correction factor of PSO and APSO is c1 = 2.0,
c2 = 1.6. The platform is as the following: operating
system is 64-bit Windows 7, CPU is Intel(R) Xeon(R)
CPU E31230 @ 3.20 GHz, RAM is 8.00 GB, MAT-
LAB version is 7.11.0.584(R2010b). The total run-
time of ML-APSO algorithm under above conditions
is 37.1966 seconds.

The accuracy of identification of the proposed mod-
els is assessed by comparing overall output response of
estimated model and true output, and also the relative
parameter estimation error which is σ % = ‖θ(t) −
θ‖/‖θ‖.

The true and estimated output of the last 50 sample
times of the three algorithms are shown in Figs. 5–10
under different NSR for RLS, ML-PSO, ML-APSO,
respectively. The trajectories of parameters during the
identification process of ML-PSO under NSR 17.75 %
is shown in Fig. 11.

As is shown in Figs. 5, 6, and 7 that, when NSR
is 17.75 %, predicted output (dashed line) using RLS
method fits real output (solid line) not so good, several
predicted value deviate from real output largely such
as values at sample time 1955, 1985 and 1992—see
Fig. 5. As to ML-PSO method (Fig. 6), the predicted
output fits real output much better than that of RLS,
while there are still some deviations between solid line
and dashed line at the sample time 1960, 1990, etc.
When using ML-APSO method, as Fig. 7 depicted,
the predicted output fits real output perfectly, which
is huge improvement on PSO and RLS.

To see more about the improved performance of
ML-APSO, the three algorithms is evaluated with a
different NSR. Figures 8, 9, and 10 show the similar
results (NSR = 28.56 %) are obtained as in Figs. 5,
6, and 7 (NSR = 17.75 %). Notice that the predicted
output we get after applying ML-APSO fits real out-
put much better than RLS does, especially at the
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Fig. 4 Flow chart of
ML-APSO algorithm

points where the derivatives of output changes dra-
matically, like points at sample time 1953, 1965,
etc.

Figure 11 depicts the process of changing of each
parameter during identification using ML-APSO algo-
rithm when NSR is 17.75 %, the dashed lines are real
parameters. It can be seen that after merely 80 itera-
tions the estimated parameters converged to real pa-
rameters. Noise parameter d1 has the biggest steady
state error while other parameters’ steady state error is
relatively small.

Tables 1 and 2 list the true parameters and identifi-
cation result of each parameter for RLS, ML-PSO, and
ML-APSO algorithms, respectively, with NSR equals
28.56 % (Table 1) and 17.75 % (Table 2). The last col-
umn is the relative error of each estimated parameter.
As we can see that ML-PSO yields better estimates
than RLS, and ML-APSO yield better estimates than
ML-PSO under the same sample times and NSR con-
dition.

From Tables 1 and 2 and Figs. 5–11, the following
conclusions can be drawn:
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Fig. 5 Real output vs. RLS
output (NSR = 17.75 %)

Fig. 6 Real output vs.
ML-PSO output
(NSR = 17.75 %)

(1) The strategy of paring maximum likelihood prin-
ciple and swarm intelligence yields much better
output than that of RLS, see Figs. 5–10. Moreover,
the adaptive strategy performed on PSO yields
better output than standard PSO—see Figs. 6–10.

(2) In line with conclusion 1, for the same data length,
both of the maximum likelihood-based algorithms
(ML-PSO and ML-APSO) yield superior param-
eter estimations to RLS algorithm proposed by

Ding by 0.4042 % and 1.2939 %, respectively,
when NSR is 28.6 %; 2.0367 % and 3.2235 %
when NSR is 17.75 %—see Tables 1 and 2.

(3) ML-APSO algorithm achieved a smaller parame-
ter estimation error than ML-PSO for 0.8897 %
(NSR = 28.65) and 1.1868 % (17.75 %)—see Ta-
bles 1 and 2.

(4) As the noise-to-signal-ratio decreased from
28.56 % to 17.75 %, the parameter estimation er-
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Fig. 7 Real output vs.
ML-APSO output
(NSR = 17.75 %)

Fig. 8 Real output vs. RLS
output (NSR = 28.56 %)

rors become smaller for all the three algorithms:
RLS for 0.9627 %, ML-PSO for 2.5952 %, ML-
APSO for 2.8932 %—see Tables 1 and 2.

7 Conclusions

A novel enhanced particle swarm optimization-based
maximum likelihood algorithm is applied to estimate
the Hammerstein model parameters, where an ESE

strategy is presented to get a novel adaptive particle
swarm optimization by defining an evolutionary fac-
tor and a state transition scheme. The presented algo-
rithm is examined comparatively with other identifi-
cation methods, due to the superior statistical perfor-
mance of maximum likelihood principle and the im-
proved searching ability of APSO, it is derived that
the proposed algorithm achieves better results than
its ML-PSO and RLS counterparts both in terms of
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Fig. 9 Real output vs.
ML-PSO output
(NSR = 28.56 %)

Fig. 10 Real output vs.
ML-PSO output
(NSR = 28.56 %)

convergence speed and accuracy under various levels
of noise-to-signal ratio. When NSR is 28.65 %, the
estimation error of ML-APSO is 1.2949 % superior
to RLS method, when NSR is 17.75 %, the error is
3.2235 % superior to RLS. These revealed the effec-
tiveness and advantage of the proposed ML-APSO ap-
proach.

8 Nomenclature

y(t) System output
x(t) True output, not corrupted by noise
v(t) White noise
w(t) Colored noise
u(t) Inner variable
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Fig. 11 Converging
process of each parameter
(NSR = 17.75 %)

Table 1 Identification results for the parameter estimates (NSR = 28.56 %)

Method a1 a2 b1 b2 c2 c3 d1 σ %

True value 1.6000 0.8000 0.8500 0.6500 0.5000 0.2500 0.6400 0.0000 %

Ref. [14], Automatica, 2005 (RLS) 1.5981 0.8010 0.9303 0.5614 0.5095 0.3085 0.5954 6.1543 %

This work (ML-PSO) 1.5944 0.7969 0.7958 0.6131 0.5582 0.3441 0.6271 5.7501 %

This work (ML-APSO) 1.5946 0.7971 0.8948 0.6786 0.4806 0.1840 0.5939 4.8604 %

Table 2 Identification results for the parameter estimates (NSR = 17.75 %)

Method a1 a2 b1 b2 c2 c3 d1 σ %

True value 1.6000 0.8000 0.8500 0.6500 0.5000 0.2500 0.6400 0.0000 %

Ref. [14], Automatica, 2005 (RLS) 1.6023 0.8017 0.8389 0.6710 0.5002 0.2242 0.5695 5.1916 %

This work (ML-PSO) 1.6029 0.8038 0.8538 0.6245 0.5008 0.2797 0.5811 3.1549 %

This work (ML-APSO) 1.5985 0.7988 0.8614 0.6436 0.4979 0.2531 0.5979 1.9681 %

ai, bi, ci, di System parameters
f (u(t)) Nonlinear function
w1,w2, . . . ,wnc Basis of a nonlinear function
const A constant number
σ 2

v Variance of white noise
σ̃ 2

v Estimated variance of white noise

θML Parameters to be identified by ML
method

rand1, rand2 Random numbers between (0,1)

c1, c2 Acceleration coefficients of PSO
Gbest Global best particle
Lbest Local best particle
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pi Position of particle i

g Generation index representing the
current number of revolutionary gen-
erations

G Predefined maximum number of gen-
erations

dg The sum of the distance of the glob-
ally best particle and other particles

Dg The sum of vectors of the globally
best particle and other particles

f Evolutionary factor
ω Inertia weight
NSR Noise-to-Signal-Ratio, defined as

NSR =
√

var[v(t)]
var[u(t)] × 100 %
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